
Rust 专场

Michael Yuan 2023年05月28日

How does WebAssembly become a preferred runtime for Rust?

$ cargo build --release
 Compiling hello v0.1.0 (/.../rust-examples/hello)
 Finished release [optimized] target(s) in 0.53s

$ ls -al target/release/hello
-...x 2 root root 4322184 ... target/release/hello

$ target/release/hello
Hello WasmEdge!

$ rustup target add wasm32-wasi

$ cargo build --target wasm32-wasi --release
 Compiling hello v0.1.0 (/.../rust-examples/hello)
 Finished release [optimized] target(s) in 0.61s

$ ls -al target/wasm32-wasi/release/hello.wasm
-...x 2 root root 2132806 ... target/.../hello.wasm

$ wasmedge target/wasm32-wasi/release/hello.wasm
Hello WasmEdge!

Why WebAssembly (Wasm)?

• Write once run anywhere – like Java

• No need to cross-compile

• Only need to port the Wasm runtime to many Oses and hardware platforms
• Linux / Windows / Mac OS / seL4

• aarch64, x86, RISC-V

Cross-platform portable

Why WebAssembly (Wasm)?

• Sandboxed memory access

• Capability-based security model to access OS resources

• Safer than traditional Linux containers
• Proven to support untrusted code

• Much reduced attack surface

Secure

Why WebAssembly (Wasm)?
Manageable by container tools

Why WebAssembly (Wasm)?

• Can be embedded into a host application written in a different language
• Rust

• Go

• C/C++

• Java

• Python

• .NET / C#

• Great for creating plugins or extensions

Embeddable

Why WebAssembly (Wasm)?

• Embed functions written in these languages into your Rust app
• Rust

• Tinygo (future Go)

• C/C++

• JavaScript

• Python

• Great for creating plugins or extensions

Language agnostic

Why WebAssembly (Wasm)?
Lighter and perhaps even faster!

A lightweight, secure, high-performance and extensible WebAssembly Runtime

• Support networking socket and web services

• Support databases, caches, and DOs

• Support AI inference in Tensorflow, OpenVino, PyTorch etc.

• Seamlessly integrates into the existing cloud-native infra

• Support writing wasm programs using JS

 https://github.com/WasmEdge/WasmEdge

https://github.com/WasmEdge/WasmEdge

Challenges and solutions
Only supports generic CPUs

• Challenge:
• Does not support advanced hardware features at the Wasm level

• Solution:
• Use AOT to generate advanced CPU instructions

• Supports new CPU features like SIMD

• Use host functions to support hardware features like the GPU / TPU

Challenges and solutions
Limited system access

• Challenge:
• WASI does not provide a complete set of POSIX features

• Especially in the area of networking sockets and file system access

• Solution:
• WasmEdge sockets allow non-blocking, DNS-enabled and TLS-enabled sockets

• Rust
• HTTP / HTTPS clients and servers: https://wasmedge.org/docs/category/44-http-services

• Database drivers: https://wasmedge.org/docs/category/47-database-drivers

• JavaScript
• fetch() and node server: https://wasmedge.org/docs/develop/javascript/networking

https://wasmedge.org/docs/category/44-http-services
https://wasmedge.org/docs/category/47-database-drivers
https://wasmedge.org/docs/develop/javascript/networking

Challenges and solutions
Single-threaded

• Challenge:
• The guest app in the Wasm runtime cannot be multithreaded

• Solution:
• The Wasm + WASI thread proposals to spawn new VMs in lieu of threads

• Use co-routines on a single thread
• Supports Rust’s tokio framework

• Future: the Wasm stack switching proposal (typed continuation)

• Allows multiple concurrent network connections in a single VM instance:

https://github.com/second-state/microservice-rust-mysql

https://github.com/second-state/microservice-rust-mysql

Challenges and solutions
Single-threaded

• Challenge:
• Rust tokio SDK does not have visibility into the binary-distributed Wasm instance

• Solution:
• Fiber-based solution

• The Wasm stack switching proposal (typed continuation to add pause, suspend, resume)

• Async WASI implementation

• Examples:
• Async host functions: https://github.com/second-state/wasmedge-rustsdk-examples/tree/main/define-async-host-func

• Async Wasm: https://github.com/L-jasmine/WasmEdge/tree/feat/async

https://github.com/second-state/wasmedge-rustsdk-examples/tree/main/define-async-host-func
https://github.com/L-jasmine/WasmEdge/tree/feat/async

Wasm will also make Rust better
High level of abstraction

• The Component model
• Provides clearly defined modules with security boundaries

• Allows Rust-like resource management (borrow checks) at runtime!

• Provides tooling to generate APIs for many languages

• WASI NN for AI inference
• Supports Tensorflow, PyTorch, and OpenVINO backends

• Example: https://github.com/second-state/WasmEdge-WASINN-examples

• Mediapipe support: https://github.com/WasmEdge/WasmEdge/issues/2355

• Document AI support: https://github.com/sarrah-basta/wasmedge_ai_testing

• WASI Cloud: https://github.com/WebAssembly/WASI/issues/520

https://github.com/second-state/WasmEdge-WASINN-examples
https://github.com/WasmEdge/WasmEdge/issues/2355
https://github.com/sarrah-basta/wasmedge_ai_testing
https://github.com/WebAssembly/WASI/issues/520

Wasm will also make Rust better
Enables Rust APIs for other popular languages

• JavaScript:

https://wasmedge.org/docs/develop/javascript/rust

• Python:

https://github.com/WasmEdge/WasmEdge/issues/2471

https://wasmedge.org/docs/develop/javascript/rust
https://github.com/WasmEdge/WasmEdge/issues/2471

Example: Use Rust to create
LLM plugins
Async, I/O intensive applications that must be easy to write

https://github.com/flows-network/

https://github.com/flows-network/

Step 1: The application registers
with a Rust host app to receive
external trigger events.

When the event is received, the
host will call run() again and
listen_to_event() will be able to
retrieve the event data in the
payload.

Step 2: The handler() function use GitHub Rust SDK
to retrieve all patches associated with commits in the
PR.

The PR information is passed to the function via the
payload.

Step 3: Each patch is sent to ChatGPT for
summarization. The commit patch summaries are
stored in an array.

Step 4: Use ChatGPT API to summarize the
summaries and send the result back to the PR as a
comment.

https://github.com/flows-network/github-pr-summary

https://github.com/flows-network/github-pr-summary

THANKS

