// -
Gl THE GLOBAL 0PEN§O-UR’C,;E-.'[’-ECH‘I,\‘I,OI:,(T)GY COZN'FER.ENCET |
e sl B OPEN SOUBLE PINTE THE EUFLRE 8 f 70 1 |

Wasm is a fast, light alternative to Linux containers - try it out today with the Docker+Wasm Beta.

Products Developers Pricing Blog About Us Partners

. Solomon Hykes @shykes@hachydern.. Develop faster. Run anywhere.

Y @solomonstre

The most-loved Tool in Stack Overflow’'s 2022 Developer Survey.
The Docker+wasm announcement

makes perfect sense. We no longer live
in a single-runtime world: there are ey

@& Intel Chip
linux containers, windows containers
and wasm containers. OCl can R L
package them all, | should be able to
build and run them all with @docker.

3:02 AM - 10/25/22
298 Likes 70 Retweets 7 Quotes WHAT'S NEW

Docker + Wasm = Awesome!

Wasm is & new, fast, and light alternative to the Linux/Windows containers you're using in

4 PESOME Docker today — give it a try with the Docker+Wasm Beta.

—> Tryit

ERABEAES s //docs.docker.com/desktop/wasm/

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

https://docs.docker.com/desktop/wasm/

)4 CNCF Annual Survey 2022 |

T 7 CLOUD NATIVE

Lk <! COMPUTING FOUNDATION

KEY FINDINGS

343

CONTAINERS ARE THE
NEW NORMAL, AND
WEBASSEMBLY IS THE
FUTURE

XA BEEARES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

X CNCF Annual Survey 2022 |

T 7 CLOUD NATIVE

L. <l COMPUTING FOUNDATION

END USER ORGANIZATIONS
THAT HAVE USED
WEBASSEMBLY, WITH
WASMEDGE AND WAMR BEING
THE TOP RUNTIMES

7%

GOTC

X CNCF Annual Survey 2022 |

™7 CLOUD NATIVE

k= <l COMPUTING FOUNDATION

Have you used or are aware of the
following WebAssembly

runtimes?

WASMEDGE

53%

WEBASSEMBLY MICRO RUNTIME (WAMR)

51%

WASMER

40%

38%

33%

36%

GOTC

. . CNCF Annual Survey Key Finding:
WASI is released, allowing

It started from Alon Zakai's Wasm to access system. “Containers are the new
side project aiming to improve Server side Wasm is going to normal, and WebAssembly
JavaScript’s performance. mainstream. is the future”

Mainstream browsers like

Firefox, Chrome, Safari WebAssembly becomes
and Edge supported the fourth language for
WebAssembly. the web.

2019.12

2019.03

WebAssembly W3C
Group is founded.

ByteCode Alliance is
founded.

EXRABRBEARIES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

P Wasm as an alternative to Linux containers GOTC

* 1/100 the size of typical LXC images

* 1000x faster startup time

* Near native runtime performance

* Secure by default and very small attack surface
« Completely portable across platforms
 Programming language agnostic

* Plays well with k8s, service mesh, distributed runtimes etc.

EXRABRBEARIES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

) Q WasmEdgeRuntime GOTC

A lightweight, secure, high-performance and extensible WebAssembly Runtime

Support networking socket and web services

Support databases, caches, and DOs

Support Al inference in Tensorflow, OpenVino, PyTorch etc.

Seamlessly integrates into the existing cloud-native infra

Support writing wasm programs using JS

https://github.com/WasmEdge/\WWasmEdge
SRAEBEARNES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

https://github.com/WasmEdge/WasmEdge

GOTC

o :nntainerm

docker kubernetes
B ‘ Red Hat

fedora

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

... . GOTC

:" Orchestration & Management

: KubeEdge SuperEdge | |OpenYurt|| Podman

i Kubernetes minikube KinD microk8s

High-level container runtimes | ! Docker Kubernetes |
S . [conaners
: , : containerd |
Low-level container runtimes (OCI runtimes)

Sandbox APl .~ |TaskAPI

[} 2, A}

1 1

- : wasm-sandboxer wasm-task |
containerd-wasm ! !

containerd-shim aliinn - || | —

WebAssembly app
images

Linux container images

WasmEdge

WasmEdge

runc WasmEdge

container gz Named pipe

container

The container ecosystem

EXRABRBEARIES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

Demo: A database backed
mIcroservice

https://wasmedge.org/docs/develop/build-and-run/docker wasmi#create-
and-deploy-a-database-driven-microservice-in-rust

https://wasmedge.org/docs/develop/build-and-run/docker_wasm#create-and-deploy-a-database-driven-microservice-in-rust

) How it started

Web server /
proxy

HTTP

Linux container

LRAFHARES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCIH

HTTP server +
business logic +
MySQL client

DB socket

GOTC

Database

p How it’s going GOTC

[Docker Compose / Kubernetes }

;) i N

HTTP server +
business logic +
HTTP MySQL client DB socket
© g N >

/ V- \\
HTTP proxy / HTTP server +

load balancer / «— | business logic + [«—— | Database
Dapr sidecar MySQL client

HTTP server +
business logic +
MySQL client

https://github.com/second-state/microservice-rust-mysdl

WasmEdge

éi*;:l: '1— ;i * MU Linux container R

THE GLOBAL OPENSOURCE TECHNOLOG

https://github.com/second-state/microservice-rust-mysql

S UoCker+vdsil (beld) | UOCKE!D A

€« > cC

& github.com/second-st

O wasm-learning/lib... 5 develope

O Search or jump to...

x DevRelX | Develo...

ate/microservice-rust-my

g SELONa=slale/Mmicroservice-ru- A T

r relation... @ DCO Check - Sign... DV Demystifying Dev... [J| Rust China Conf2.. B3 tools

Pull requests Issues Codespaces Marketplace Explore

A

B second-state / microservice-rust-mysql Public X

<> Code () Issues (2 I Pull requests

¥ 2branches 0 tags

P main ~

) Your main branch isn't protected

R o e T e e e e
branch fro orce pushing

Protect this p

=

juntao Update docker-compose.yml

.github/workflows

B F @

client

src
.gitignore

[§ cCargo.toml
[% Dockerfile

[LICENSE

Star here:

Edit Pins ~ (> Watch 4

() Actions [Projects [0 Wiki () Security |~ Insights {8 Settings
Go to file Add file ~ <> Code ~
_ _ Protect this branch X

deletion, or require status checks before merging. Learn more

v 27443dc © days ago 'G) 31 commits
Update ci.yml 24 days ago
client last month
last month
tial commit 2 months ago
ritial code mont go
Jpdate Dockerfile to not cache bust with client changes ast month
nitial comn > months ago

B3 Investors

% Fork 12 “ W Starred 98 -

About 3

g

A template project for building a
database-driven microservice in Rust
and run it in the WasmEdge sandbox.

00 Readme

Kl O T W & 1 |1
el .'r:\.pj-..!{_,i 1e-L.U 1l

17 98 stars

&> 4 watc

Rinos
ning

~E L
T 12 forks

Contributors 2

@ juntao Michael Yuan
% mikesir87 Michael Irwin

https://github.com/WasmEdge/WasmEdge

FRAFFEEAR

THE GLOBAL OPENSOURCE TECHNOLOGY CONFEREN

4 Light, fast and secure

wasmedge @
Q @realwasmedge

A complete Redis app running inside a secure
Wasm container managed by Docker + #Wasm.
Total app size is 0.7MB and starts in
milliseconds. (A comparable Linux container
app for #redis is easily 50+MB).

github.com/WasmEdge/wasme...

@Redisinc @Docker

= "current_thread")]

is::Client: :open(&*get_url())?;
ient.get_connection()?;

t!("{}", chrono::Utc::now());
e result, just make sure it does
.set("current_time", time)?;

key and return it. Because the
tion is a result for String, thif
one.

ng = con.get("current_time")?;
sfully GET “time': {}", value);

redis

cache-1
ca43890171¢5 I[)

client-1

7c4bd5c4sfa4 ID) (25D

11:55 PM - 2/11/23 from Austin, TX - 12.2K Views

wasmedge @
Q @realwasmedge

A #PostgreSQL client app running inside a
secure Wasm container managed by Docker +
#Wasm. Total app size is 0.8MB. It runs
anywhere and starts in milliseconds. (A
comparable Linux container is easily 50MB).

github.com/WasmEdge/wasme...

@PostgreSQL @planetpostgres @Docker

c0d79a60e [[]

-1
ba30918f67 [

6:50 PM - 2/14/23 from San Francisco, CA - 16K Views

GOTC

Example: Log processing

https://github.com/second-state/wasmedge-mysql-binlog-kafka

https://github.com/second-state/wasmedge-mysql-binlog-kafka

|I‘-ﬂ'l e s}

EXRABRBEARIES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

p Wasm use cases GOTC

* Microservices

« Runtime for serverless functions

» UDF for databases

 Embedded functions for data streaming frameworks
* Al and LLM automation

* Native API for SaaS

« Smart contracts on blockchains

EXRABRBEARIES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

p LLM + SaaS automations GOTC

* Plugins provide crucial infrastructure for LLM applications
* memory (embeddings db)
« eyes, ears (external event triggers)
* hands (external API for actions)
« They are "inefficient” serverless functions
* Simple logic in the function
» Lotsof OAUTH complexity and external connections
» Extended I/O waiting time
 WasmEdge also works with Al models
» Supports inference with TF, TFLite, PyTorch, and OpenVINO

» Google Mediapipe models: https://github.com/\WasmEdge/\WasmEdge/issues/2355
 Document Al models: https://github.com/sarrah-basta/wasmedge ai testing

XA BEEARES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

https://github.com/WasmEdge/WasmEdge/issues/2355
https://github.com/sarrah-basta/wasmedge_ai_testing

¥ Merged

ommits into from ;[—i 0

[Rust] Optimize host function #2

alabulei1 commented on Apr 5 Member

Hello, | am a on . Here are my reviews of code commits in this PR.

Overall Summary:

This set of patches involves modifications primarily to the Rust bindings for the wasmedge-sys component, the related CI
workflow, and the test files. The primary focus of these changes is to improve memory management, remove limits on the
number of host functions, and update assertions in tests.

Potential issues and errors:

1. Removing the check for host function capacity and the '"MAX_HOST_FUNC_LENGTH' environment variable could lead to
excessive resource consumption, affecting system stability and performance.

2. The test_crazy_function_creation function may consume a significant amount of system resources and take a long
time to finish. Additionally, increasing the loop count from 10 to 1,000,000 in function.rs might lead to performance
concerns and resource exhaustion.

3. Changing the assertions in tests to use assert! instead of assert_eq! (and vice versa) could lead to altered test
outcomes and potential false test failures.

4. Mutexes and RwLocks in the code can potentially cause deadlocks if not implemented carefully.

5. Updating the Rust Cl workflow to restrict the number of test threads to 1 across all platforms could slow down the CI
process.

Important Findings:

1. Memory management has been improved through the addition of support for removing real functions in Rust, and the
creation of a footprint for host functions.

2. Changes have been made to the Rust bindings Cl workflow, including updating the operating systems matrix and Rust
compiler versions matrix, as well as modifying the cargo test commands to set the test-threads to 1.

3. The various changes to the test files involve updating assertions and modifying test scenarios, affecting the conditions
that are being checked and the performance of the tests.

Given these changes, it's important to ensure that potential issues such as deadlocks, resource exhaustion, and false test
failures are mitigated. Also, be cautious when removing limitations on host functions, as it could impact overall system
stability and performance.

[WIP] plugin opencvmini #

dannypsnl wants to merge 11 ¢

O

juntao commented last month Member | °**

Hello, | am a serverless review bot on flows rk. Here are my reviews of changed source code files in this PR.

The code snippet provided is a C++ code for a WasmEdgeOpenCVMini class. Here are some observations:

1. #pragma once is used to prevent multiple inclusions of the same file which is fine.

2. SPDX-License-Identifier and SPDX-FileCopyrightText are used to indicate the license.

3. The opencvmini_env.h header file and two other header files are included.

4. A template class named 'WasmEdgeOpenCVMini that inherits from the Runtime::HostFunction<T> class is defined.

5. The constructor initializes the inherited class HostFunction<T> with a value zero and an instance of
WasmEdgeOpenCVMiniEnvironment .

6. The class declaration is enclosed within two namespace blocks, WasmEdge and Host .

There are no visible problems with the provided code snippet. This seems to be a class definition and more code may be
added later.

The patch doesn't introduce any changes to the existing code. It is the same as the original code snippet.

This code snippet defines a plugin for the OpenCVMini library in the context of the WasmEdge project. The code sets up a
WasmEdgeOpenCVMiniEnvironment class that derives from Plugin::HostEnvironment . There is a module
WasmEdgeOpenCVMiniModule that is created and stored in the Plugin::PluginModule: :ModuleDescriptor object
Descriptor . This object includes the name of the plugin, its version, and other related information. The plugin descriptor

contains only one module, namely WasmEdgeOpenCVMiniModule .

The code snippet seems to be correct and without any obvious problems. However, there may be issues with this code
depending on the context in which it is used, which cannot be reviewed from this snippet alone.

The patch has no substantive changes. It is simply reformatting the code, reorganizing the newlines between some of the
statements, and adjusting the indentation. Overall, it looks like style and formatting updates, and it does not introduce any
functional changes to the code logic.

KRR

THE GLOBAL OPENSOURCE TECHNOL

GOTC

X Add function 'check_prime' for node's crypto API by Aviii06 - Pull Request #&

ED Changes from all commits v File filter ¥+ Conversations ~ @ v

Q Filter changed files v 49 HEEEE src/internal_module/crypto.rs L',j
16 + ifn <= 14
v [example_js/node G2 + return JsValue::Bool(false);
18 + }
D main.mjs 19 + let limit = (n as f64).sqrt() as i32;
20 + for' a in 2..1imit {
. 21 + ifrida=0H4
+
D package.json 22 + return JsValue::Bool(false);
23 + ¥
[rollup.config.js 24+ }
25 + JsValue: :Bool(true)
26
v B src 0
27 +

EXRABRBEARIES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

GOTC

< second-state/wasmedge-quickjs Add function 'check_prime' for node's crypto API @

Potential problems:

1. The check_prime function can be optimized further, as it checks for divisibility with
even numbers after 2, which isn't necessary.

EXRABRBEARIES

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERENCE

GOTC

https://github.com/flows-network/github-pr-summary

 review bot template in . The template contains the source code for the bot itself. We
will clone the source code to your own GitHub account so that you can modify and customize it later. Click on Create
and Deploy.

. Authorize bot access to GitHub. The github_owner and github_repo point to the target GitHub repo where the
bot will review PRs. Click on Authorize to give the repo the necessary permissions in GitHub.

. Give the bot your OpenAl API key. If you have saved API keys in the past, you can skip this step and reuse these
keys.

SR FEEAL

THE GLOBAL OPENSOURCE TECHNOLOGY CONFERET

https://github.com/flows-network/github-pr-summary

GOTC

éiﬁﬁiﬂiﬂtlﬂ%“*

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

